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UNIFICATION OF STATISTICAL METHODS FOR

CONTINUOUS AND DISCRETE DATA

by Emanuel Parzen

Department of Statistics, Texas A&M University1

0. Introduction

This paper introduces notation and concepts which establish unity and analogues

between various steps of statistical data analysis, estimation, and hypothesis testing by

expressing them in terms of optimization and function approximation using information

criteria to compare two distributions. The contents may be described as composed of two

parts whose section titles are as follows.

Part L Statistical Information Mathematics and Comparison Density Functions.

1. Traditional Entropy and Cross-Entropy

2. Comparison Density Functions

3. Renyi Information Approximation

4. Chi-square Information Divergence

Part I. Comparison Density Approach to Unity of Statistical Methods

5. One Sample Continuous Data Analysis

6. One Sample Discrete Data Analysis

7. Multi-sample Data Analysis and Tests of Homogeneity

8. Bivariate Data Analysis

9. Examples of One Sample and Multi-Sample Continuous Data Analysis

1. Traditional Entropy and Cross-Entropy

The (Kullback-Liebler) information divergence between two probability distributions

F and G is defined by

I(F; G) (-2) J log{g(x)/f(x)}f(x)dx

1Research supported by the U.S. Army Research Office
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when F and G are continuous with probability density functions f(z) and g(z); when F and

G are discrete, with probability mass functions PF(x) and pG(x), information divergence

is defined by

I(F;G) = (-2) og{pG()/pF()}pF(z).

An information decomposition of information divergence is

I(F;G) = H(F;G) - H(F),

in terms of entropy H(F) and cross-entropy H(F; G); our definitions differ from usual

definitions by a factor of 2:

H(F) = (-2) {logf(x)}(x)dx,

H(F;G) = (-2) {logg(x)}f(x) dx.

2. Comparison Density Functions

Information divergence I(F; G) is a concept that works for both multivariate and uni-

variate distributions. This paper proposes that the univariate case is distinguished by the

fact that we are able to relate I(F; G) to the concept of comparison density d(u; F, G) whose

maximum entropy estimation provides significant extensions of information divergence.

Quantile domain concepts play a central role; Q(u) = F-1(u) is the quantile function.

When F is continuous, we define the density quantile function fQ(u) = f(Q(u)), score

function J(u) -(fQ(u))', and quantile density function

q(u) = 1/fQ(u) = Q'(u).

When F is discrete, we define fQ(u) = pF(Q(u)), q(u) = 1/f Q(u).

The comparison density d(u; F, G) is defined as follows: when F and G are both

continuous,

d(u;F,G) = g(F-1(u))/f(F-1(u));
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when F and G are both discrete

d(u : F, G) = pG(F-1 (u))/PF(F-1(u)).

In the continuous case d(u; F, G) is the derivative of

D(u;F,G) = G(F-(u));

in the discrete case we define

D(u; F, G) = f d(t; F, G)dt.

Let F denote the true distribution function of a continuous random variable Y. To test

the goodness of fit hypothesis H0 : F = G, one transforms to W = G(Y) whose distribution

function is F(G-(u)) and whose quantile function is G(F-1 (u)). The comparison density

d(u; F, G) and d(u; G, F) are respectively the quantile density and the probability density

of W.

3. Renyi Information Approximation

For a density d(u), 0 < u < 1, Renyi information (of index A), denoted IRA (d), is non-

negative and measures the divergence of d(u) from uniform density do(u) = 1, 0 < u < 1.

It is defined:

IRo(d) = 2f (d(u) logd(u)}du;

IRji(d) =-2 f{logd(u)}du;

for A - 0 or -1

IRA(d) ={2/A(l + \)Iogjfo{d(u)1+A du.

To relate comparison density to information divergence we use the concept of Renyi

information IRA which yields the important identity (and interpretation of I(F; G)!)

I(F; G) = (-2) 1 log d(u; F, G)du

= IR 1 I(d(u;F, G)) = IRo(d(u;G,F)).
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Interchanging F and G: One can prove a basic identity:

IRA(d(u;F,G)) = IR_(I+A)(d(u;G,F))

Note A = -(1 + A) for A = -. 5. Hellinger information divergence is

IR-. 5 (d) = -8log {d(u)}'5du.

Minimizing IR,\(d) subject to constraints on d is equivalent, for A > 0, to minimizing

the LP norm of d for p = 1+A; we can apply the mathematical theory of this problem which

is currently being developed (Chui, Deutsch, Ward (1990)). Note L 2 norm corresponds to

X = 1. The minimizing function d^ will satisfy IRA(d^) _ IR,(d).

Convergence Lemma. If dm(u) is a sequence of densities and X > 0,

IRA(dm(u)) converges to 0 implies fJ ldm(u) - ljdu converges to zero.

Approximation Theory. To a density d(u), 0 < u < 1, approximating functions are

defined by constraining (specifying) the inner product between dfu) and a specified function

J(u), called a score function. We often assume that the integral over (0,1) of J(u) is zero,

and the integral of J 2 (u) is finite. A score function J(u), 0 < u < 1, is always defined to

have the property that its inner product with d(u), denoted

[J,d] = IJ(u),d(u)] = J(u)d(u)du,

is finite. The inner product is called a component or linear detector; its value is a measire

of the difference between d(u) and 1.

The question of which distributions to choose as F and G is often resolved by the

following formula which evaluates the inner product between J(u) and d(u; F, G) as a

moment with respect to G if J(u) = p(f-'(u)):

[p (F 1 (u)) ,d(u;F,G)] = J o(y)dG(y) = EG[p(Y)I

Often G is a raw sample distribution and F is a smooth distribution which is a model

for G according to the hypothesis being tested.
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Approximations in L 2 norm are based on a sequence Jk(u), k = 1,2,..., which is

a complete orthonormal set of functions. Then if d(u), 0 < u < 1, is square integrable

(equivalently, IR 1 (d) is finite) one can represent d(u) as the limit of
m

dm(u) = 1 + Z[Jk,d]Jk(u),m = 1,2 ....

k=1
When oPk(y), k = 1, 2,..., is complete orthonormal set for L 2(F), g(y) is approximated

by

M (Y) =f (y) I + 1: EG [kk(Y)]I P'k(Y)
k=1 f

We call dm(u) a truncated orthogonal function (generalized Fourier) series.

An important general method of density approximation, called a weighted orthogonal

function approximation, is to use suitable weights wk to form approximations

d*(u) = 1 + Y Wk[Jk,d]Jk(u).

k=1

to d(u). Often wk depends on a "truncation point" rn, and wk - 1 as m - oo.

We propose that non-parametric statistical inference and density estimation can be

based on the same criterion functions used for parametric inference if one uses the minimum

Renyi information approach to density estimation (which extends the maximum entropy

approach); form functions dA,m^(u) which minimize IRA(dP(u)) among all functions d^(u)

satisfying the constraints

[Jk,dc] = [Jk,d] for k = 1,...,m

where Jk(u) are specified score functions. One expects dm^(u) to converge to d(u) as rn

tends to oo, and IRA(dAm^) to non-decreasingly converge to IRA(d).

Quadratic Detectors. To test H0 : d(u) = 1, 0 < u < 1, many traditional goodness of

fit test statistics (such as Cramer-von Mises and Anderson-Darling) can be expressed as

quadratic detectors
00 

1
2wkk = - d* (u) - 1} 2 du

k=1

jd* (u)}2du -1 = -1 +expIR(d*).
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We propose that these nonadaptive test statistics are only of historical interest since they

are not as powerful as minimum Renyi information detectors IRA(dA,m,); in addition the

latter provide unification of statistical methods.

Maximum entropy approximators correspond to A = 0; dO,m'(U) satisfies an exponen-

tial model (whose parameters are denoted 01,., Om)

m

log do,,^(u) = Y OkJk(U)- T,(0 , ,Om)
k=1

where T is the integrating factor that guarantees that dO,m^(U), 0 < u < 1, integrates to

1: /jl

T (o,..., orM = log exp E OkJk(u)}du

The approximating functions formed in practice are not computed from the true com-

ponents [Jk,d] but from raw estimators [Jk,d ] for suitable raw estimators d(u). The

approximating functions are interpreted as estimators of a true density. Methods proposed

for unification and generalization of statistical methods use minimum Renyi information

estimation techniques. Different applications of these methods differ mainly in how they

define the raw density d-(u) which is the starting point of the data analysis.

4. Chi-square information divergence

In addition to Renyi information divergence (an extension of information statistics)

one needs to use an extension of chi-square statistics which has been developed by Read

and Cressie (1988). For A 5 0, 1, Chi-square divergence of index A is defined for continuous

F and G by

CA(F; C) = JB ( (Y) f(y)dy

where

BA(d) - (1+ d (d'l) -d+ I

B 0 (d) =2{dlogd-d+1}

B-l(d) = -2{logd- d + 1}
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Important properties of B),(d) are:

BA (d) > 0, B\(1) = B1(1) = 0,

B'(d) = - ), B"(d)-- 2=A- 1

B(d) (d- 1)2

B 0 (d) = 2(dlogd- d + 1)

B.s(d) = 4 (d'5 - 1)2

B-1 (d) =-2(logd - d + 1)

B- 2 (d) = d-1 _ 1)2

Renyi information of index A is defined for continuous F and G: for A # 0, 1

IRA (F;G) 2 (1 log f (y) dy

IRo(F/G) = 2f {. log Y) }f(y)dy

IR-I(F;G) = -2J {log g ()} f(y)dyf- t f (Y)d

An analogous definition holds for discrete F and G.

The Reny! information and chi-square divergence measures are related:

IRo(F; G) = Co(F; G)

IR_I(F;G) = C_1 (F;G)

For A $ 0, 1,

IRX(F;G) 2 log 1+ C(1+A) )A(1 )

Interchange of F and G is provided by the Lemma:

CA(F; G) = C_(+A)(G; F)

IRA(F;G) = IR_(1+ A)(G; F)
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For a density d(u), 0 < u < 1, define

CA(d) = 1 BA(d(u))du.

The comparison density again unifies the continuous and discrete cases. One can show

that for univariate F and G

CA(F, G) = CA(d(u;F, G))

5. One Sample Continuous Data Analysis

We now apply statistical information mathematics to describe a unified approach to

one sample continuous data analysis which uses optimization and approximation based on

information criteria to develop methods which are simultaneously parametric, nonpara-

metric, maximum entropy nonparametric, estimation, testing parametric hypotheses, and

goodness of fit of parametric model. Let Y1,... , Y, be a random sample of a continuous

random variable Y with true unknown distribution F and sample distribution F-.

A parametric model F(x; 0) for F assumes that the true probability density function

belongs to a parametric family f(x; 0) with distribution function F(x; 0). The maximum

likelihood estimator 0̂  minimizes

I(F-; F(.; 0)) = IR-l(d(u; F-,F(.; 0)).

To prove the proposition, we denote by L(O) the twice average log likelihood function:

L(O) = (2/n) logf(Y1,...,Vn;O)

= 2E-[logf(Y;O)]

= 2 log f(y; 0)dF-(y).

To maximize likelihood we express it as minus cross-entropy:

L(0) H (V;F(.;0)).
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Temporarily assuming away the fact that F has only a symbolic density f-, the maximum

likelihood estimator 0^ can be regarded as minimizing over 0

I (F-; F(.; 0)).

0^ may be interpreted as the parameter value 0 for which the sample quantile function

F(F-'(u);0) of the transformed variable W0 = F(Y;0) is closest to uniform. Tra-

ditional goodness of fit statistics test how close to uniform is the sample distribution

function F-(Q(u;O^)) of W o- whose symbolic probability density is a raw estimator of

d(u; F(.; 0^), F).

Outline of statistical reasoning: We propose that the various steps of statistical rea-

soning compose 4 actions which are the goals of statistical science:

1. Make observations (step 0) and summarize by F; 2. Form expectations (steps 1

and 2) which is a parametric model for the observations expressed by F(.; 0^); 3. Compare

observations and expectations (steps 3 and 4); 4. Revise model to fit observations (steps

5 and 6). The revised model is equivalent to a nonparametric estimator F.

Step 0. Observations. The sample is summarized by its sample distribution function

F and its sample quantile function Q-.

Step 1: Parametric Model Specification. Using diagnostic tools (such as the identifi-

cation quantile function) identify a parametric family F(x; 0) such that for all 0

supud(u;F(.;0)),F) < 0.

Step 2: Parameter estimation. Maximum likelihood estimator 0^ can be obtained by

minimizing

IR 1 (d(u; F, F(.; 0))

A parametric estimator of F is F(x) = F(x; 0-).

Step 2": Robust parameter estimators 0^ can be obtained by minimizing

IRA (d (u; F*, F(.; 0)))

9



for a suitable smooth non-parametric distribution function estimator F* and suitable values

of A, usually chosen in the interval -1 < A < 0.

Step 3: Parametric hypothesis testing. To test a hypothesis H0 about the parameter 0,

let 0 Hô  denote the maximum likelihood estimator of 0 under H0 ; equivalent to likelihood

ratio tests is the test statistic

IR- 1 (d (u; F, F ('; 0H,,))) - IR1 (d (u; F-, F (-; 0-)))

Step 4: Goodness of fit test of H0 : F = F(.; 0) or equivalently H0 : d(u; F(.; 0), F) =

0. Test the significance of the difference from zero of

IRo(d(u; F(.; 0), F) = IR_ 1 (d(u; F, F(.; O-)).

Step 5: Maximum entropy goodness of fit tests and estimators do,m^(U) of

d(u;F(.;O-), F) are obtained by minimizing Io(d^) among densities d"(u) satisfying, for

k m1,...,rm and specified score functions Jk (u),

[Jk,di1 = [Jk,ad-

defining d(u) = d(u; F(.; 0^), F'). For m large enough do,^(u) equals dF(u) and IRo(do,m)

increases to the test statistic of Step 4, IRo(d(u; F(.; 0^), F-)).

Step 6: Rejection simulation nonparametric estimation of F. Use an order determining

criterion to determine an order m^ with the properties: if m^ = 0, accept HO; if one rejects

H0 use dom,^(u) as the density to be used in the rejection method of simulating a random

sample from F. The combination of F(.; 0^) and do,mr^(u) is regarded as an estimator F^.

We propose that order determining criteria should be regarded as providing density

estimators which require further goodness of fit tests. We propose (as an open research

problem) a method for testing if a smooth estimator d(u) adequately smooths a raw

estimator d-: test if the ratio d-(u)/d(u) has as its best smoother a constant function.
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6. One Sample Discrete Data Analysis

Step 1: Identify a parametric family of probability mass functions p(x; 0) to model the

sample probability mass function p-(x).

Step 2: Parameter estimation. Maximum likelihood estimator 0^ can be obtained by

minimizing

IR- 1 (d(u; K, F(.; 0))) = (-2) E log{p(x; )/p~(x)}p-(x)

A parametric estimator of p is p^(x) = p(x; 0^). Minimum chi-square estimation uses the

modified chi-squared distance

IRI(d(u; F, F(.; 0))) = Z{(p(x; O)/p(x)) - 1}2pV(X)
X

Step 3: Parametric hypthesis testing. To test a hypothesis Ho about the parameter

9, let OHo denote the minimum-modified chi square estimator of 0 under Ho; equivalent

to likelihood ratio tests is the test statistic

IRI(d(u; F, F(.; OH,)) - IRl(d(u; K, F(.; O-)))

Step 4: Goodness of fit test of H0 : p = p(.; O) or equivalently H 0 : d(u; F(-; 0^), F) = 0.

Test the significance of the difference from zero of

IRl(d(u; F(-; 0^), F)) = IR- 2 (d(u; F, F(.; 0^))).

Step 5: Maximum entropy goodness of fit tests and estimators do,n^(u) of

d(u; F(.; 0*), F) are obtained by minimizing IRo(d^) among densities d^(u) satisfying, for

k = 1,...,m and specified score functions Jk(u),

[Jk,d ^] = [Jk,d-1

defining d-(u) = d(u; F(.; 0^), F). For m large enough do,m^(u) equals d-(u) and IRo(do,m^)

increases to a test statistic (alternative to that of Step 4) IRo(d(u; F(.; 0^), F')).
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Step 6 Rejection simulation nonparametric estimation of F. Use an order determining

criterion to determine an order m^ with the properties: if m^ = 0, accept H0 ; if one rejects

H0 use do,m-^(u) as the density to be used in the rejection method of simulating a random

sample from F. The combination of F(.; 0^) and do,,m(u) is regarded as an estimator F^.

7. Multi-Sample Data Analysis and Tests of Homogeneity

Multi-sample data arises when one observes the values of a variable Y in several pop-

ulations which can be regarded as indexed by a variable X. One can therefore regard

multi-samples as independent observations of a bivariate random variable (X, Y). Con-

ventional multi-sample statistical analysis is concerned with testing the hypothesis H0 of

homogeneity, which we express

H0 : Y is independent of X.

To formulate H0 in terms of comparison density functions let us note that non-

parametric statistics are based on replacing the response Y by its rank transform which

in the population is

W Fy(Y)

The sample rank transform is

W- =Py(Y)

where Py'(y) is sample mid-distribution function of Y defined by

Py'(y) = Fy'(y) - .5py-(y),

in terms of the sample distribution function F- and sample probability mass function p.

The sample quantile function of the W- values which are rank transforms of Y values

associated with a fixed value of X is an estimator of the conditional quantile function of

W

Qw:x(u) = Fy:x(F I (u))= D(u;Fy,Fy:x).
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The innovation of our approach is a new type of linear rank statistics which are estimators

of the form, called sample components,

[ Jk (u), d(u; Fy -, Fy: X)

of population components

[ gk (u), d (u; Fy , Fy:X)]

for suitable score functions Jk(u).

Score functions J(u) = 4(Fj'(u)) satisfy

[J(u), d(u; Fy, FyIx)1 = EyX[cp(Y)] = EyIX[J(Fy(Y))];

this component is the conditional mean given X of J(W), where W = Fy(Y) is the

rank transform of Y. A Wilcoxon statistic corresponds to J(u) = (12)' 5 (u - .5) whose

sample component is equivalent to a rank-sum statistic. The conditional mean E[YIX] is

a component with score function J(u) = Qy(u).

The traditional approach to multiple sample tests of homogeneity is to test the signifi-

cant difference from zero of the sample components. We propose that a comprehensive way

to test the homogeneity hypothesis H0 is to estimate the comparison density d(u; Fy, FyIx)

for each value of X, and various chi-square statistics

CX,, A= CA (d(u;Fy,Fy:x)).

8. Bivariate Data Analysis

Another approach to understanding the role of chi-squared measures of the difference

of the comparison density from the uniform d(u) = 1, 0 < u < 1, is to regard X and

Y as random variables and express the homogeneity hypothesis H0 as a hypothesis of

independence:

H0 : Fyjx(ylx) = Fy(y) for all y and x.

13



Bivariate data analysis can be unified by the dependence density function defined for 0 <

ul, U2 < 1 by

dx,y(ul,u 2) = d(u 2;Fy,FyIx('IQx(ul))

Traditional maximum likelihood estimators (and EM algorithms) for response vari-

ables Y with covariates X can be based on the information measure of dependence, called

mutual information, defined for continuous random variables X and Y by

I(YIX) = IR 1 (Fx,y,FxFy) = IR-l(fx,y, fxfy)

= (-2) f log{fx(x)fy(y)/fxy(x,y)}fxy(z,y)dxdy

The fundamental relation usually used to study the information about Y in X measured

by I(YIX) is

I(YjX) = H(YIX) - H(Y)

defining H(YIX) = ExH(fyIx), called conditional entropy of Y given X.

We obtain a fundamental relation expressing mutual information in terms of compar-

ison density function of Fy and FyIX which measures how well fy models yIX:

I(YIX) = ExIRo(d(u;Fy,Fylx))

= ExCo(d(u;Fy,FyIx))

This is proved by writing

I(YIX) = 2 f dxfx(x)

J dyfy(y) log{fyjx(yj)/fy(y)}{fyix(yjx)/fy(y)}

2Ex f log{d(u; Fy, FyIx)}d(u; Fy, Fy 1x)du

Traditional chi-squared test statistics satisfy

CA (Fx, y, Fx Fy) = ExCA (d(u; Fy x , Fy))

= ExC_(1+A)(d(u; Fy, FyIx))

14



We define the chi-square divergence (of index X) of Y given X to be

CA(YIX) = ExCA(d(u; Fy, Fyjx))

Traditional chi-square statistics for discrete data use A = 1. Read and Cressie (1988)

recommend A = 2/3.

The notation is at hand to state our comparison density approach to multi-sample

data analysis and tests of homogeneity:

Step 1: Form raw estimates for each value of X

dx-(u) = d(u; Fy-, FyIX-)

which is computed using the formula for comparison density function of sample discrete

distributions.

Step 2: Form ind test significance of difference from zero of various components

[gk(u),dx-(u)J

for suitable score functions Jk(u).

Step 3: Estimators of dX(u) = d(u; Fy, Fy:x) by minimum Renyi information esti-

mators

dX,A,m ^(u)

subject to constraints

[Jk(u),dX (u)] = (Jk(u),dX (u)]

Step 4: Smooth chi-squared tests of H0 are based on smooth density estimators sub-

stituted in the population formulas

CA(YIX) = Ex[CX, A,

CX, A = CA (d(u; Fy, FyIx))

Further one can disaggregate CX,A into statistics CXy, called "hanging Chi-squares".

They are asymptotically distributed as Chi-Squared with 1 degree of freedom. If one
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rejects the hypothesis of homogeneity, the hanging Chi-squares help identify the sources

of rejection.

This outline requires many details and examples to be understandable by statisticians

not used to the point of view of statistical culture.

Contingency table data analysis. For 0 < p < 1, define ODDS (p) = p/(1 - p). For r

by c contingency table, total sample size N, one forms sample statistics
C

cA-(YIX) E {1 - px'(k)} Ck,A
k=1

r

Ck,A = {1 - py'I)} Cj,k.A"
j= 1

Cj,k,A = ODDS (px-(k)) ODDS (py(j))BA (pyIX(jk)

(py-(i)J
Asymptotic distributions of test statistics:

(N - 1)CA'(YIX) is Chi-square ((r - 1)(c - 1))

(N - 1)Ck j is Chi-square (r - 1)

(N - 1)CjkA " is Chi-square

Multiple-Sample Goodness of Fit Tests. One can associate a weighted orthogonal series

density estimator d* (u; Fy, FyIx) for each value of X, using suitable complete orthonormal

functions cpj(u) and weights wj.

C

CA'(YIX) = E {1 - px-(k)} Ck"
k=l

Ck= ODDS (px-(k)) {d*(u;Fy,FyIx=k) - 1}du

00

w 3"Cj, k

Cj,k-= ODDS {pX-(k)} [ Pj(u), d(u; Fy, FyIX=k)] 2

Cramer-von Mises Goodness of Fit Test;

wj= 1/jr,pj(u) = 2" 5 cos(j7ru).
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*1

{D(u) - u} 2 du = [j d] 2

j=1

Anderson Darling Goodness of Fit Test:

w= {i/jj+ i)}5 , Jp(u) (2] + 1).5 pj(2u - 1),

10 {D(u) -u2( -u)}du w00 pj
j=1

pj(t) are Legendre polynomials on [-1,1].

Hermite Polynomial Goodness of Fit Test:

wj= 1/j, pj(u) = (j!)-SHj (-'(u));

Hj(x) are Hermite polynomials.

9. Examples of One Sample and Multi-Sample Continuous Data Analysis:

National Bureau of Standards NB1O Measurements: Freedman, Pisani, Purves in their

textbook on Statistics (p.94) report 100 measurements of the 10 gram check-weight NB10

made at the National Bureau of Standards. They report: "The normal curve does not

fit at all well. The normal curve does fit the data with three outliers removed. The

normal curve fitted to these measurements has an average of 404 micrograms below 10

grams, and a standard deviation of about 4 micrograms. But in a small percentage of

cases, the measurements are quite a bit farther away from the average tb-an the normal

curve suggests. The overall standard deviation of 6 micrograms is a compromise between

the standard deviation of the main part of the histogram (4 micrograms) and the three

outliers, representing deviations of 18, -30, and 32 micrograms. In careful measurement

work, a small percentage of outliers is expected. The only unusual aspect of the NB10

data is that the National Bureau of Standards reported its outliers; many investigators

don't. Realistic performance parameters require the acceptance of all data that cannot be

rejected for cause."
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The NB10 data illustrates the statistical analysis strategy that we propose be routinely

applied to data. Step 1. Specify a parametric probability model for the data (here the

model is normal). Step 2. Estimate parameters of the model (here mean and standard

deviation) to be 10 grams-404 micrograms and 6 micrograms respectively. Step 2*. Robust

parameter estimation by Renyi information of index between 0 and 1 obtains as estimators

of a normal model (fitted to the part of the data that can be well fitted by a normal model)

the same mean and a standard deviation of 4 micrograms. Step 4: Goodness of fit test of

normality by traditional tests. Step 5: Maximum entropy estimator of comparison density

d(u; normal model, data) clearly indicates the nature of the data; a poor fit of normal

model to data. Shape of d^(u) in interior of interval (0,1) can be interpreted as expected

curve if d^(u) estimates

d(u; N(0, (6)2), N(0, (4)2))

= Kcexp {-.5 (K2 - 1) (D-(u))2} ,K = 6/4.

Peaks of d^(u) at u = 0, 1 indicate longer tails than normal. In general, one must decide

whether to consider these tails in d(u) as outliers or as evidence that a longer tailed

distribution than the normal should be used to model the data. In Figure 2 two graphs

illustrate the comparison density estimation process: the raw estimator f(u) superimposed

on a smooth estimator d^(u); the exponential model smooth estimator d0 ,4^, the orthogonal

polynomial estimator dl,4 ^, and a naive step function estimator d* representing increments

of D-(u) on 8 equal subintervals. Diagnostic tools at step 1 which help identify probability

models for the data are illustrated by a IQQ plot of the sample quantile function of the data

versus the quantile function of a normal with density f(x) = exp(-rx 2). The informative

quantile function of the sample is defined QF(u) = {Q-(u) - Q-(.5)}/2{Q-(.75) - Q-(.25)}.

Breaking Stress of Beam: Cheng and Stephens (1989) give a data set of breaking stress

of 41 beam specimens cut from a single carbon block of graphite H590, and discuss goodness

of fit .ests of the hypothesis that the data is normal. Let F(.; 0^) denote the normal
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4,

distribution with maximum likelihood estimated value of 0. They show that Moran's

statistic, which is equivalent to IRo(d(u; F(.; 0), F-) "correctly" rejects the hypothesis that

the sample is normal, in contrast to more traditional empirical distribution based statistics

(such as Kolmogorov-Smirnov and Cramer-von Mises) which accept the hypothesis of

normality for the sample tested. The comparison density estimation approach indicates the

nature of the data; an excellent fit of normal model in interior of interval (0,1) but peaks at

u = 0, 1 indicate outliers or long tails (clearly evident in stem and leaf table of the data).

One conjectures that a symmetric extreme value distribution would be a more appropriate

model. Figure 3 illustrates the comparison density estimation process for a normal model

F(.; 0^). The graph of D(u; F(.; 0^), F-) is graphically well fitted by a uniform distribution,

and therefore passes traditional goodness of fit tests. The raw estimator d(u; F(.; 0f), F-)

is superimposed on a smooth estimator. The exponential model smooth estimator d^(u) is

superimposed on a step function estimator computed from increments of D(u; F(., 0^), F-)

over 8 sub-intervals.

Cheng and Stephens Break Stress Data
(Stem and Leaf)

27 .55
28
29 .89
30 .07 .65
31 .23 .53 .53 .82
32 .23 .28 .69 .98
33 .28 .28 .74 .74 .86 .86 .86
34 .15 .15 .15 .44 .62 .74 .74
35 .03 .03 .32 .44 .61 .61 .73 .90
36 .20 .78
37 .07 .36 .36 .36
38
39
40 .28

Multisample of ratio of assessed value to sale price of residential property: To illustrate

the comparison density approach to testing multil-samples for homogeneity, we consider

data analysed by Boos (1986) on ratio of assessed value to sale price of residential property

in Fitchburg, Mass., 1979. The samples (denoted 1, 11, III, IV) represent dwellings in the
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categories single-family, two-family, three-family, four or more families. The sample sizes

(54, 43, 31, 28) are proportions .346, .276, .199, .179 of the size 156 of the pooled sample.

We interpret these proportions as pX-(k), k = 1,... ,4. We compute Legendre, cosine,

Hermite components {Cj,kI} "5 up to order 4 of the 4 samples; they are asymptotically

standard normal. We consider components greater than 2 (3) in absolute value to be

significant (very significant).

Legendre, cosine, and Hermite components are very significant only for sample I,

order 1 (-4.06, -4.22, -3.56 respectively). Legendre components are significant for sample

IV, orders 1 and 2 (2.19, 2.31). Cosine components are significant for sample IV, orders 1

and 2 (2.36, 2.23) and sample III, order 1 (2.05). Hermite components are significant for

sample IV, orders 2 and 3 (2.7 and -2.07).

Conclusions are that the four samples are not homogeneous (have the same distribu-

tions). Samples I and IV are significantly different from the pooled sample. Estimators of

the comparison density provide a substantive conclusion; they show that sample I is more

likely to have lower values than the pooled sample, and sample IV is more likely to have

higher values, suggesting that one family homes are underassessed and four family homes

are overassessed, while two and three family homes are fairly assessed.

When one compares components with traditional empirical distribution based tests

one concludes that the insights are provided by the linear rank statistics of orthogonal

polynomials rather than by portmanteau statistics of Cramer-von Mises or Anderson-

Darling type. Comparison density functions, which compare each sample with the pooled

sample, can provide the most substantive information.
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Figure 1
To understand the shapes of comparison density functions, graphs of d(u; G, F) andd(u;F,G) for two cases. Case 1: F normal (median 0, density at median 1), G Cauchy(median 0, density at median 1). Case 2: F normal (median 0, density at median I), G

symmetric extreme value (median 0, density at median 1).
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Figure 2
Test NB1O Measurements for Normality
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Figure 3

Test Breaking Stress Measurements for Normality
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Figure 4
Ratio of assessed price to sale price of residential property

For samples I and IV, sample comparison distribution function D-(u)
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